Clustering Data Siswa Menggunakan Metode K-Means Untuk Mengetahui Tingkat Prestasi Akademik Di SMK Negeri 2 Kota Bengkulu
Abstract
SMK Negeri 2 of Bengkulu City is one of the State Vocational High Schools in Bengkulu City that continues to strive to improve the quality of its students' academic evaluation. So far, the assessment of student academic achievement still refers to the average value. The school sometimes has difficulty in seeing student development and providing appropriate student motivation based on the results of the level of student academic achievement that has been obtained. Clustering student data using the K-Means Method in determining the level of academic achievement at SMK Negeri 2 of Bengkulu City can provide information on the level of student academic achievement in each subject which is divided into 3 groups, namely high, medium and low levels of academic achievement and can help teachers monitor student academic development, identify student learning patterns, and provide appropriate interventions according to the needs of each group. In order to facilitate the process of clustering student data to determine the level of academic achievement using the k-means method, a desktop-based application was built using the Visual Basic .Net programming language. In addition, this application also contains graphic visuals of the grouping results as output from the application. Based on the test data used, on the grade X Indonesian Language subject data for the Even Semester of the 2022/2023 Academic Year of the Mechanical Engineering Expertise Program of 23 students, the results showed that the high level of academic achievement (Cluster C1) was 7 students, the moderate level of academic achievement (Cluster C2) was 9 students, and the low level of academic achievement (Cluster C3) was 7 students
Downloads
References
[2] Fuadi, A., 2020. Prestasi Akademik Siswa Sekolah Menengah Pertama (SMP) Ditinjau Dari Konsep Diri Akademik dan Kecerdasan Emosi. Jurnal Ilmu Dakwah, Volume Vol.18.No.2.
[3] Hardiansyah, A. D. & Dewi, C. N. P., 2020. Perancangan Basis Data Sistem Informasi Perwira Tugas Belajar (SIPATUBEL) Pada Kementrian Pertahanan. Jakarta, Senamika ISBN.978-623-93343-1-4.
[4] Isa, I. G. T., 2021. Buku Ajar Pemrograman Visual Dasar. ISBN:978-623-6906-82-8 penyunt. Pekalongan Jawa Tengah: Penerbit PT. Nasya Expanding Management (NEM).
[5] Jollyta, D., Ramdhan, W. & Zarlis, M., 2020. Konsep Data Mining Dan Penerapan. Yogyakarta: Penerbit Deepublish.
[6] Kadarsih & Pujianto, D., 2022. Step By Step Belajar Database MySQL Untuk Pemula. Tangerang Selatan: Pascal Books.
[7] Maslikhah, Nurkholis, I., Marjo, H. K. & Hanim, W., 2020. Bimbingan Kelompok Dengan Teknik Latihan Saya Bertanggung Jawab Terhadap Peningkatan Prestasi Akademik. Jurnal Visipena, Volume Vol.11 No.2 e-ISSN:2502-6860.
[8] Mustika, et al., 2021. Data Mining dan Aplikasinya. ISBN:978-623-5811-14-7 penyunt. Bandung: Widina Bhakti Persada Bandung.
[9] Ningsih, S. R. et al., 2022. Perancangan Basis Data. Medan: Penerbit Yayasan Kita Menulis.
[10] Pakpahan, S., 2021. Pemrograman Visual I: Microsoft Visual Studio 2010. Medan: Penerbit Yayasan Citra Cita Milenial.
[11] Prianto, C. & Bunyamin, S., 2020. Panduan Pembuatan Aplikasi Clustering Gangguan Jaringan Menggunakan Metode K-Means Clustering. Cetakan Pertama penyunt. Bandung: Penerbit Kreatif Industri Nusantara.
[12] Rahmayanti, D. A., Juita, R. & Suhendra, C. D., 2022. Penerapan Metode K-Means untuk Clustering Data Anak Berdasarkan Kepemilikan Akta Kelahiran dan KIA. Informatics Journal, Volume Vol.7 No.3 ISSN:2503-250X, pp. 210-219.
[13] Suprapto, U., 2021. Pemodelan Perangkat Lunak (C3) Kompentesi Keahlian : Rekayasa Perangkat Lunak Untuk SMK/MAK Kelas XI. Jakarta: Grasindo.
[14] Tahyudin, I., Putra, I. M. & Syafa'at, A. Y., 2021. Data Mining Dan Data Warehouse Menggunakan Aplikasi Knime. ISBN:978-623-6287-27-9 penyunt. Banyumas Jawa Tengah: Zahira Media Publisher.
[15] Wahyudi, M., Masitha, Saragih, R. & Solikhun, 2020. Data Mining : Penerapan Algoritma K-Means Clustering dan K-Medoids Clustering. Medan: Penerbit Yayasan Kita Menulis.
[16] Wahyudi, M., Masitha, Saragih, R. & Solikhun, 2020. Data Mining : Penerapan Algoritma K-Means Clustering dan K-Medoids Clustering. Medan: Penerbit Yayasan Kita Menulis.
[17] Wanto, A. et al., 2020. Data Mining : Algoritma Dan Implementasi. Medan: Yayasan Kita Menulis.
[18] Yendrianof, D. et al., 2022. Analisis dan Perancangan Sistem Informasi. Medan: Yayasan Kita Menulis.
Copyright (c) 2025 Rahmad Evandi; Sapri Sapri, Lena Elfianty

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
An author who publishes in Jurnal Media Infotama agrees to the following terms:The author holds the copyright and grants the journal the right of first publication of the work simultaneously licensed under the Creative Commons Attribution-Share Alike 4.0 License which allows others to share the work with acknowledgment of the work's authorship and initial publication in this journal.Submission of a manuscript implies that the submitted work has not been previously published (except as part of a thesis or report, or abstract); that it is not being considered for publication elsewhere; that its publication has been approved by all co-authors. If and when a manuscript is accepted for publication, the author retains the copyright and retains the publishing rights without limitation.
For new inventions, authors are advised to administer the patent before publication. The license type is CC-BY-SA 4.0.
MEDIA INFORMATION REVIEW: Journal of the Faculty of Computer Science is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.You are free to:Share
— copy and redistribute material in any medium or formatAdapt
— remix, modify and develop materialfor any purpose, even commercial.
The licensor cannot revoke this freedom as long as you follow the license terms