Penerapan Metode Regresi Linear Dalam Prediksi Hasil Penangkapan Ikan Pada Dinas Kelautan Dan Perikanan Provinsi Bengkulu

  • Gebi Andre Anto Universitas Dehasen Bengkulu
  • Indra Kanedi Universitas Dehasen Bengkulu
  • Rizka Tri Alinse Universitas Dehasen Bengkulu
Keywords: Linear Regression Method, Prediction, Fishing Result

Abstract

Abstract— The Department of Marine and Fisheries of Bengkulu Province is one of the government agencies in Bengkulu Province. At the Department, every year data collection is carried out per semester of capture fisheries production that occurs in each regency / city in Bengkulu Province. The purpose of the research is to determine the predicted value of capture fisheries production in the coming year. The implementation of the linear regression method in predicting fishing yields at The Department of Marine and Fisheries of Bengkulu Province can help provide an estimated prediction of the amount of capture fisheries production in the following year based on the results of processing previous time series data through the Linear Regression Method. In addition, it can be used as an evaluation material for the Department of Marine and Fisheries of Bengkulu Province in making strategic plans (renstra), especially capture fisheries production. Based on the test data used, the results show that the prediction of the amount of fishing (marine fisheries) in the Regency / City of Bengkulu Province in 2024 is South Bengkulu Regency, 2726.3 Central Bengkulu Regency, 1663.62 North Bengkulu Regency, 7709.04 Kaur Regency, 8140.2 Bengkulu City, 44457.32 Muko-muko Regency, 19691.99 and Seluma Regency, 2633.8. It can be seen that the highest number of fishing products is Bengkulu City and the least is Central Bengkulu Regency from the results of prediction analysis using the linear regression method.

Keywords: Linear Regression Method, Prediction, Fishing Result.

Downloads

Download data is not yet available.

References

[1] Arhami, M., & Nasir, M. (2020). Data Mining Algoritma dan Implementasi. Yogyakarta: Penerbit Andi Publisher.
[2] Ayuni, G. N., & Fitrianah, D. (2019). Penerapan Metode Regresi Linear Untuk Prediksi Penjualan Properti Pada PT. XYZ. Jurnal Telematika Vol.14 No.2 e-ISSN:2579-377.
[3] Enterprise, J. (2019). Belajar Pemrograman Dengan Visual Studio. Jakarta: PT. Elex Media Komputindo.
[4] Firman, A. (2019). Analisis dan Perancangan Sistem Informasi. Surabaya: Penerbit Qiara Media.
[5] Huda, A. S. (2020). Prediksi Penerimaan Pegawai Baru Metode Naive Bayes. Bandung: Kreatif Industri Nusantara.
[6] Kadarsih, & Pujianto, D. (2022). Step By Step Belajar Database MySQL Untuk Pemula. Tangerang Selatan: Pascal Books.
[7] FLEXChip Signal Processor (MC68175/D), Motorola, 1996.
[8] Munir, M. M., Pranoto, Y. A., & Wibowo, S. A. (2023). Penerapan Metode Regresi Linear Dalam Perancangan Aplikasi Prediksi Jumlah Calon Peserta Didik Baru Berbasis Website (Studi Kasus : MAN 2 Kota Malang). Jurnal JATI Vol.7 No.1.
[9] Pakpahan, S. (2021). Pemrograman Visual I: Microsoft Visual Studio 2010. Medan: Penerbit Yayasan Citra Cita Milenial.
[10] Riyanto, S., & Rahman, P. A. (2022). Metode Riset Penelitian Kesehatan dan Sains. Yogyakarta: Deepublish Pubsliher.
[11] Suprapto, U. (2021). Pemodelan Perangkat Lunak (C3) Kompentesi Keahlian : Rekayasa Perangkat Lunak Untuk SMK/MAK Kelas XI. Jakarta: Grasin
Published
2025-04-09
How to Cite
Anto, G., Kanedi, I., & Alinse, R. (2025). Penerapan Metode Regresi Linear Dalam Prediksi Hasil Penangkapan Ikan Pada Dinas Kelautan Dan Perikanan Provinsi Bengkulu. JURNAL MEDIA INFOTAMA, 21(1), 158-167. https://doi.org/10.37676/jmi.v21i1.7541
Section
Articles