Systematic Literature Review: SQL Injection Detection Vulnerability Using Machine Learning
Abstract
SQL Injection (SQLI) adalah serangan keamanan pada database yang mengeksploitasi celah atau kerentanan pada input pengguna yang tidak dipantau dengan benar dalam aplikasi web dan merupakan aspek penting dalam keamanan sistem informasi. Penelitian dan pengembangan terus dilakukan menggunakan metode yang lebih efektif untuk mendeteksi dan mencegah SQLI, termasuk penggunaan algoritma Machine Learning seperti Random Forest, Naïve Bayes, Support Vector Machine, Neutral Network, Knearest, Decision Tree dan lainnya. Fokus penelitian ini adalah melakukan perbandingan terhadap hasil kinerja dari masing-masing algoritma. Penelitian ini membandingkan kinerja setiap algoritma dalam mendeteksi kerentanan SQLI terhadap serangkaian metrik terkait. Hasil analisis berdasarkan studi literatur menunjukan bahwa Random Forest dan Support Vector Machine (SVM) memiliki nilai kinerja yang unggul.
Downloads
Copyright (c) 2025 Agnes Rahayu; Eva Yulyanti; Muhammad Ghalib

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
An author who publishes in Jurnal Media Infotama agrees to the following terms:The author holds the copyright and grants the journal the right of first publication of the work simultaneously licensed under the Creative Commons Attribution-Share Alike 4.0 License which allows others to share the work with acknowledgment of the work's authorship and initial publication in this journal.Submission of a manuscript implies that the submitted work has not been previously published (except as part of a thesis or report, or abstract); that it is not being considered for publication elsewhere; that its publication has been approved by all co-authors. If and when a manuscript is accepted for publication, the author retains the copyright and retains the publishing rights without limitation.
For new inventions, authors are advised to administer the patent before publication. The license type is CC-BY-SA 4.0.
MEDIA INFORMATION REVIEW: Journal of the Faculty of Computer Science is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.You are free to:Share
— copy and redistribute material in any medium or formatAdapt
— remix, modify and develop materialfor any purpose, even commercial.
The licensor cannot revoke this freedom as long as you follow the license terms