Determining the Location Scheme and Area of Logistics Centers to Optimize the Distribution of Disaster Cluster Areas in West Java

  • Isya Nafia Institut Teknologi Bandung
  • Darwin Darwin Institut Teknologi Bandung
Keywords: Humanitarian Logistics, West Java, Voronoi, K-Means, Logistics warehouse

Abstract

The West Java province, with an area of ​​35,377.76 km² and consisting of 27 districts/cities, frequently experiences earthquakes, floods, and volcanic eruptions. This study identifies five efficient logistics center points to reach all areas within the Golden Hour (3 hours) during disasters. Using Voronoi diagrams and the K-Means algorithm, each logistics center point has specific requirements for logistics packages, including minimum volume and warehouse area. This underscores the importance of technology in enhancing precise and efficient emergency responses in West Java.

Downloads

Download data is not yet available.

References

Ahmed, S., & Ahmed, S. (2020). Disaster Logistics: A Critical Review and Bibliometric Analysis. International Journal of Disaster Risk Reduction, 50, 101753. https://doi.org/10.1016/j.ijdrr.2020.101753

Badan Nasional Penanggulangan Bencana. (2018). Peraturan Badan Nasional Penanggulangan Bencana No. 04 Tahun 2018 tentang Tata Kelola Logistik Bencana. https://bnpb.go.id/uploads/publikasi/PERBANAS-4-2018.pdf

Badan Nasional Penanggulangan Bencana. (2009). Peraturan Kepala Badan Nasional Penanggulangan Bencana (PERKA) Nomor 18 Tahun 2009 tentang Pedoman Penyusunan Rencana Penanggulangan Bencana. Jakarta, Indonesia: Badan Nasional Penanggulangan Bencana.

Badan Nasional Penanggulangan Bencana. (2014). Peraturan Kepala Badan Nasional Penanggulangan Bencana Nomor 23 Tahun (PERKA) 2014 tentang Pedoman Umum Sistem Komando Penanganan Darurat Bencana. Jakarta, Indonesia: Badan Nasional Penanggulangan Bencana.

Kovacs, G., Spens, K. M., & Laihonen, H. (2013). Relief Supply Chain Management for Disasters: Humanitarian, Aid and Emergency Logistics. Journal of Humanitarian Logistics and Supply Chain Management, 3(2), 116-135. https://doi.org/10.1108/JHLSCM-06-2013-0018

Kovačić, M. (2019). Vendor Managed Inventory in Humanitarian Operations. International Journal of Production Economics, 210, 117-126. https://doi.org/10.1016/j.ijpe.2018.10.020

Khaswani, M., Barua, S., & Ray, P. (2020). Use of GIS and Drones for Disaster Management: A Review. Computers, Environment and Urban Systems, 83, 101506. https://doi.org/10.1016/j.compenvurbsys.2020.101506

Altay, N., & Green III, W. G. (2006). OR/MS Research in Disaster Operations Management. European Journal of Operational Research, 175(1), 475-493. https://doi.org/10.1016/j.ejor.2005.05.016

Kovacs, G., & Spens, K. M. (2009). Humanitarian Logistics in Disaster Relief Operations. International Journal of Physical Distribution & Logistics Management, 39(6), 450-468. https://doi.org/10.1108/09600030910973761

Kovačić, M., & Pedersen, T. (2018). Managing Logistics Operations in Humanitarian Relief Efforts. International Journal of Logistics Management, 29(3), 837-857. https://doi.org/10.1108/IJLM-03-2017-0068

Okabe, A., Boots, B., Sugihara, K., & Chiu, S. N. (2000). Spatial Tessellations: Concepts and Applications of Voronoi Diagrams. Wiley. DOI: 10.1002/9780470316993

Aurenhammer, F. (1991). Voronoi diagrams - A survey of a fundamental geometric data structure. ACM Computing Surveys, 23(3), 345-405. DOI: 10.1145/116873.116880

Danilova, Y., & Nagornov, D. (2018). Application of Voronoi Diagram in Solving Some Problems of Logistics. Procedia Computer Science, 123, 114-120. DOI: 10.1016/j.procs.2018.01.072

MacQueen, J. B. (1967). Some methods for classification and analysis of multivariate observations. Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, 1, 281-297.

Jain, A. K. (2010). Data clustering: 50 years beyond K-means. Pattern Recognition Letters, 31(8), 651-666. DOI: 10.1016/j.patrec.2009.09.011

Lloyd, S. P. (1982). Least squares quantization in PCM. IEEE Transactions on Information Theory, 28(2), 129-137. DOI: 10.1109/TIT.1982.1056489

Tompkins, J. A., White, J. A., Bozer, Y. A., & Tanchoco, J. M. A. (2010). Facility Planning: Design for Manufacturing and Logistics (3rd ed.). Wiley. ISBN: 978-0470444047.

Pagh, J. D., & Cooper, M. C. (2011). Supply Chain Logistics Management (4th ed.). McGraw-Hill. ISBN: 978-0078024054.

Waters, D. (2003). Logistics: An Introduction to Supply Chain Management (2nd ed.). Palgrave Macmillan. ISBN: 978-1403901061.

Ballou, R. H. (2004). Business Logistics Management: Planning, Organizing, and Controlling the Supply Chain (5th ed.). Pearson Education. ISBN: 978-0521779682

Haining, R. (2003). Spatial data analysis: Theory and practice. Cambridge University Press.

Longley, P. A., Goodchild, M. F., Maguire, D. J., & Rhind, D. W. (2015). Geographical information systems and science (4th ed.). Wiley. ISBN: 978-1118676950

Fotheringham, A. S., Brunsdon, C., & Charlton, M. E. (2000). Quantitative geography: Perspectives on spatial data analysis. Sage Publications. ISBN: 978-0761966901

GeoHack. (2024). GeoHack: Innovative Solutions for Geographic Challenges. Retrieved from https://www.geohack.com

BARATA. (2024). BARATA: Monitoring and Reporting Application. Retrieved from https://barata.jabarprov.go.id/front?start=2024-01-01&to=2024-06-28

Published
2024-10-15
How to Cite
Nafia, I., & Darwin, D. (2024). Determining the Location Scheme and Area of Logistics Centers to Optimize the Distribution of Disaster Cluster Areas in West Java. JURNAL MEDIA INFOTAMA, 20(2), 542-548. https://doi.org/10.37676/jmi.v20i2.6514
Section
Articles