Aplikasi Analisis Wajah, Klasifikasi Gender dan Prediksi Usia Menggunakan Deep Learning pada Dataset Citra Wajah Manusia
Abstract
Age and Gender Detection is a technology that utilizes artificial intelligence (AI) algorithms to identify and analyze the age and gender of a person through image capture as output. This technology provides automatic estimation of age and gender starting from detecting one or more objects (humans) and performing age and gender detection. The program uses pre-trained models and prototypes for face detection, age, and gender, resulting from training processes using deep learning techniques. By using these models and prototypes, the program can efficiently analyze each face found in images or videos and provide age and gender estimates with reliable accuracy. The main purpose of the Age and Gender Detection Application is to provide accurate and useful information about the age and gender of individuals based on the input images, becoming an efficient solution in image processing and artificial intelligence fields for various application contexts requiring facial data analysis.
Downloads
References
[2] A. Arifandi, “Identifikasi dan Prediksi Umur Serta Jenis Kelamin Berdasarkan Citra Wajah Menggunakan Algoritma Convolutional Neural Network (CNN),” J. Terap. Sains Teknol., vol. 4, no. 2, pp. 89–96, 2022, [Online]. Available: https://ejournal.unikama.ac.id/index.php/jtst/article/view/6985.
[3] T. Susim and C. Darujati, “Pengolahan Citra untuk Pengenalan Wajah (Face Recognition) Menggunakan OpenCV,” J. Syntax Admiration, vol. 2, no. 3, pp. 534–545, 2021, doi: 10.46799/jsa.v2i3.202.
[4] Ri Munarto, Rian Fahrizal dan Ardian Darma, Klasifikasi Gender dan Usia Berdasarkan Citra Wajah Manusia Menggunakan Convolutional Neural Network. Cilegon, Banten: Jurusan Teknik Elektro UNTIRTA, 2021.
[5] A. Sitohang and I. Taufik, “Pendeteksian Wajah Manusia Pada Citra Digital Menggunakan Template Matching,” J. Teknol. dan Ilmu Komput. Prima, vol. 1, no. 2, pp. 81–86, 2018, doi: 10.34012/jutikomp.v1i2.248.
[6] R. N. Wicaksono, H. Nugroho, and G. E. Yuliastuti, “Pengenalan Pola Citra Ekspresi Wajah Manusia Menggunakan Masker Dengan Metode Convolutional Neural Network (CNN),” Pros. Semin. Nas. Sains dan Teknol. Terap., pp. 1–6, 2023.
[7] A. Neviyani and Asmunin, “Identifikasi Dan Prediksi Umur, Jenis Kelamin Serta Deteksi Emosi Berdasarkan Citra Wajah Menggunakan Alogaritma Convolutional Neural Network (CNN),” J. Manaj. Inf., pp. 1–13, 2023.
[8] Risky Aditia, Muhammad Sunni Arrafiq dan Fahrul Afandi, Implementasi Opencv Face Recognition Pada Real-Time Deteksi Umur Dan Jenis Kelamin Menggunakan Python dengan Metode Klasifikasi. Medan: Jurnal Garuda Pengabdian Kepada Masyarakat, 2023.
[9] V. Karenina, M. F. Erinsyah, and D. S. Wibowo, “Klasifikasi Rentang Usia Dan Gender Dengan Deteksi Suara Menggunakan Metode Deep Learning Algoritma Cnn (Convolutional Neural Network),” Komputika J. Sist. Komput., vol. 12, no. 2, pp. 75–82, 2023, doi: 10.34010/komputika.v12i2.10516.
[10] Adi Sapto Raharjo, Ari Saputra dan Suhendro Yusuf Irianto, Pengembangan Pengolahan Citra Face Recognition, Face Counting dan Age Gender Detection Secara Real Time di Python. Bandar Lampung: IIB Darmajaya, 2019.
[11] Riko Firmansyah dan Siswanto, Penerapan Algoritma CNN Untuk Mengenali Jenis Kelamin Yang Berinteraksi Pada Video Advertising. Jakarta Selatan: Jurnal Riset dan Pengabdian Masyarakat, 2023.
[12] Afrizal Zein, Memprediksi Usia dan Jenis Kelamin Menggunakan Convolutional Neural Network. Tangerang Selatan: Sainstech, 2020.
[13] Alwendi dan Masriadi, Pengenalan Wajah Manusia pada Citra Menggunakan Metode Fisherface. Padangsidimpuan: Jurnal Digit, 2021.
[14] O. Agbo-ajala and S. Viriri, “Deeply Learned Classifiers for Age and Gender Predictions of Unfiltered Faces,” vol. 2020, 2020.
[15] R. Febriawan, “Klasifikasi gender pada citra wajah menggunakan convolutional neural network dan transfer learning skripsi,” 2022.
Copyright (c) 2024 Ch Angga Marcelio, Muhammad Adlan Azzikra, Dimas Putra Mufazzal, Aripili Rahman Illahi, Sulaiman Al Husain, Abdiansah Abdiansah
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
An author who publishes in Jurnal Media Infotama agrees to the following terms:The author holds the copyright and grants the journal the right of first publication of the work simultaneously licensed under the Creative Commons Attribution-Share Alike 4.0 License which allows others to share the work with acknowledgment of the work's authorship and initial publication in this journal.Submission of a manuscript implies that the submitted work has not been previously published (except as part of a thesis or report, or abstract); that it is not being considered for publication elsewhere; that its publication has been approved by all co-authors. If and when a manuscript is accepted for publication, the author retains the copyright and retains the publishing rights without limitation.
For new inventions, authors are advised to administer the patent before publication. The license type is CC-BY-SA 4.0.
MEDIA INFORMATION REVIEW: Journal of the Faculty of Computer Science is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.You are free to:Share
— copy and redistribute material in any medium or formatAdapt
— remix, modify and develop materialfor any purpose, even commercial.
The licensor cannot revoke this freedom as long as you follow the license terms