Perbaikan Kualitas Menggunakan Metode Failure Mode And Effect Analysis Dan Fault Tree Analysis Pada Produk Punch Extruding Red Di PT. Jaya Mandiri Indotech

by Jurnal Ekombis Review
Perbaikan Kualitas Menggunakan Metode Failure Mode And Effect Analysis Dan Fault Tree Analysis Pada Produk Punch Extruding Red Di PT. Jaya Mandiri Indotech

Wawan Kurniawan 1); Debbie Kemala Sari 2); Fira Sabrina 3)

1) Study Program of Industrial Engineering University Trisakti
Email: 1) Wawan.kurniawan@trisakti.ac.id; 2) debbie.kemala@trisakti.ac.id; 3) firasabrina@gmail.com

How to Cite:

ARTICLE HISTORY
Received [2 Desember 2021]
Revised [22 Desember 2021]
Accepted [12 Januari 2022]

KEYWORDS
Quality, Failure Mode and Effect Analysis (FMEA), Fault Tree Analysis (FTA), Potensi Cause, Risk Priority Number (RPN).

ABSTRAK
Tujuan dari penelitian adalah memberikan usulan perbaikan kualitas untuk peningkatan kinerja produk punch extruding red. Perbaikan dilakukan dengan menggunakan metode Failure Mode and Effect Analysis (FMEA) dan Fault Tree Analysis (FTA). Dari perhitungan FMEA didapatkan nilai peningkatan keandalan dengan RPN tertinggi, yaitu usia pemakaian mata pahat sudah terlalu lama dengan nilai RPN sebesar 550, tingkat penggunaan mesin yang tinggi dengan nilai RPN sebesar 490, dan alat potong tidak diperiksa dengan nilai RPN sebesar 360. Dari perhitungan FTA didapatkan nilai peningkatan keandalan yaitu tidak ada pencatatan untuk pencatatan masalah mesin pada waktu yang diperhitungkan lebih besar dari 0,125, dan operator ingin cepat selesai dengan waktu yang lebih besar dari 0,125. Usulan yang dapat dibuat adalah pembuatan record card untuk data waktu yang diperhitungkan dan pemberian pelatihan yang lebih dalam untuk operator. Pelatihan form pembuatan record card untuk data waktu yang diperhitungkan dan pemberian pelatihan yang lebih dalam untuk operator.

ABSTRACT
The purpose of the research is to provide quality improvement proposals to improve punch extruding red products. The research was conducted using Failure Mode and Effect Analysis (FMEA) and Fault Tree Analysis (FTA) methods. From the calculation of FMEA obtained three causes of potential failure with the highest RPN, namely the life of the chisel eye has been too long with a value of RPN of 550, machine use with a value of RPN of 490, and cutting tools are not checked with a value of RPN of 360. From the FTA calculation, four root problems were obtained, namely no recording to record the time of the chisel eye with a probability of 0.15, no special treatment of the chisel eye storage with a probability of 0.125, no daily maintenance of the machine with a probability of 0.125, and the operator wanted to quickly finish with a probability of 0.10. Proposals that can be done are the creation of a record card for the lifetime of the chisel eye and the design of the provision of special shelves for storage of chisel eyes, the creation of a daily maintenance form of the machine, and the provision of training to operators. The application of the lathe's daily maintenance form for 10 days of production lowered the percentage of defects to 2.94%.

PENDAHULUAN
PT. Jaya Mandiri Indotech merupakan perusahaan yang bergerak di bidang manufaktur yang berkantor di Bekasi sejak tahun 2008. Perusahaan ini memproduksi berbagai macam spare parts atau komponen mesin-mesin pada pabrik seperti gear, roll forming, dies forming, dowel pin, punch extruding...

Tabel 1. Persentase Produk Cacat Punch Extruding Red (Sumber: PT. Jaman Indotech)

<table>
<thead>
<tr>
<th>Bulan</th>
<th>Jenis Proses</th>
<th>Jumlah Produksi (unit)</th>
<th>Jumlah Produk Cacat (unit)</th>
<th>Persentase Cacat (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oktober 2020</td>
<td>Grooving</td>
<td>4</td>
<td>0</td>
<td>4.08%</td>
</tr>
<tr>
<td></td>
<td>Contour</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Taper</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Turning</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Grinding</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>November 2020</td>
<td>Grooving</td>
<td>4</td>
<td>0</td>
<td>4.00%</td>
</tr>
<tr>
<td></td>
<td>Contour</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Taper</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Turning</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Grinding</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Desember 2020</td>
<td>Grooving</td>
<td>5</td>
<td>0</td>
<td>4.90%</td>
</tr>
<tr>
<td></td>
<td>Contour</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Taper</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Turning</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Grinding</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Rata-Rata</td>
<td></td>
<td></td>
<td></td>
<td>4.33%</td>
</tr>
</tbody>
</table>

Berdasarkan tabel diatas, rata-rata persentase cacat di proses grooving adalah sebesar 4.33%. Sedangkan penelitian batas persentase cacat produk pihak perusahaan adalah zero defect. Hal tersebut menyebabkan adanya gap antara batas persentase cacat yang ditetapkan dengan persentase cacat yang ditimbulkan. Berdasarkan hal tersebut, ditetapkan gap dapat mengurangi gap diantara keduauanya sehingga dapat meminimisi jumlah produk cacat. Tujuan dari penelitian ini adalah untuk memberikan usulan perbaikan kualitas produk punch extruding red, dengan tahapan: 1) mengidentifikasi penyebab kegagalan potensial selama proses grooving produk punch extruding red, 2) merintis prioritas penyelesaian masalah berdasarkan RPN dari produksi produk punch extruding red, 3) mengidentifikasi akar penyebab kegagalan pada proses grooving produk punch extruding red, 4) memberikan usulan perbaikan yang tepat untuk peningkatan cacat pada produk punch extruding red serta 5) melakukan implementasi dari usulan perbaikan pada proses grooving produk punch extruding red.

LANDASAN TEORI

Jurnal/Ekonombis Review, Vol. 10 No. 1 Januari 2022 page: 152 – 166 | 153
Kualitas berarti bebas dari errors yang mengharuskan dilakukannya pengerojaan ulang (rework) atau yang mengakibatkan kegagalan lapangan, ketidakpuasan pelanggan, klaim pelanggan, dan sebagainya (DeFeo, 2016). Terdapat delapan dimensi kualitas yaitu performance, reliability, durability, features, conformance to specifications, serviceability, perceived quality, dan aesthetics (Gaspersz, 2002). Peta kendali merupaka sahen satu alat pengendalian kualitas yang digunakan secara grafis untuk mengawasi dan mengevaluasi apakah suatu proses berada dalam batas pengendalian kualitas atau tidak sehingga dapat meningkatkan kualitas (Heizer & Render, 2013). Peta kendali p digunakan untuk mengukur proporsi kegagalan atau cacat pada suatu proses produksi. Proporsi cacat diartikan sebagai rasio jumlah item yang tidak sesuai dengan keseluruhan jumlah item dalam suatu populasi. Jika suatu item tidak memenuhi karakteristik kualitatif yang telah ditentukan sebelumnya, maka item tersebut diklasifikasikan sebagai cacat (Montgomery, 2012).

Failure Mode and Effect Analysis (FMEA) merupakan sebuah teknik yang digunakan untuk menentukan, mengidentifikasi, dan mengurangi kegagalan, masalah, kesalahan, dan seterusnya yang diketahui atau potensial dari sebuah sistem, desain, proses dan pelayanan sebelum mencapai konsumen (S. S. S., 2003). Failure Mode and Effect Analysis (FMEA) bertujuan melakukan perbaikan dengan cara merubah sesuatu telah dijalankan secara efisien atau belum dan apakah mungkin di dalam perbaikan, menentukan akibat yang potensial pada peralatan, sistem yang berhubungan dengan setiap model kegagalan, membuat rekomendasi untuk menambah keandalan komponen, peralatan, dan sistem (Ansori & Mustajab, 2013). Tiga elemen yang digunakan untuk mengidentifikasi kegagalan potensial adalah severity, occurrence, detection (Bakhtiar, A., Sembing, J. I., & Suliantoro, 2018). Tingkat keparahan (Severity) merupaka penilaian yang berkaitan dengan seberapa besar keparahan efek yang ditimbulkan dari suatu kegagalan yang terjadi. Tingkat kejadian (Occurrence) merupaka tingkat dari seberapa sering kemungkinan penyebab kegagalan terjadi. Tingkat deteksi (Detection) merupakan perhitungan terhadap kemampuan mengendalikan atau mengontrol kegagalan yang dapat terjadi dari kontrol yang sudah ada (Bakhtiar, A., Sembing, J. I., & Suliantoro, 2018). Nilai RPN didapatkan dari hasil perkalian ketiga elemen dan diurutkan berdasarkan nilai RPN terbesar ke terkecil. Potensi kesalahan dengan nilai RPN tertinggi memerlukan upaya penanganan yang serius untuk mengurangi angka resiko.

Metode FTA adalah teknik yang digunakan untuk mengidentifikasi resiko penyebab kegagalan. Metode ini dilakukan dengan pendekatan yang bersifat “top down”, yaitu mulai dari asumsi kegagalan dari kejadian puncak (top event) kemudian merindui penyebab (suatu top event sampai pada suatu kegagalan dasar (root cause) (Hanifi et al., 2015). Terdapat tiga (3) angka dalam pembuatan FTA (Fault Tree Analysis), yaitu mengidentifikasi top level event berupa jenis kerusakan yang telah terjadi sebelumnya (undesired event) untuk mengidentifikasi kesalahan sistem, membuat diagram pohon (salah), dan menganalisis pohon kesalahan (Suhartono, 2017). Proses pengembangan produk, merupakan tahap-tahapan atau kegiatan untuk menyusun, merancang, dan mengkonstruksikan suatu produk. Proses pengembangan produk itu sendiri terdiri dari 6 tahapan atau fase, yaitu perencanaan, pengembangan konsep, perancangan tingkat sistem, perancangan detail, pengujian dan perbaikan, dan produksi awal (Ulrich & Eppinger, 2012).

METODE PENELITIAN

Metode Analisis

Terdapat dua jenis data yang dibutuhkan untuk penelitian, yaitu berupa data primer dan data sekunder. Data primer yang diperoleh langsung saat melakukan pengamatan secara langsung pada lantai produksi, berupa proses produksi Punch Extruding Red, kondisi dan lingkungan tempat kerja, dan data produk catat setiap tahapan proses. Sedangkan data sekunder, berupa data umum perusahaan, sejarah perusahaan, profil perusahaan, data jumlah produksi, serta struktur organisasi perusahaan.

Tahapan pengolahan data diawali dengan melakukan pengumpulan data mengenai jumlah produksi produk Punch Extruding Red dan jumlah produk catat Punch Extruding Red. Selain itu, dilakukan pengumpulan data mengenai jumlah catat produk pada tahapan proses yang dilakukan produk Punch Extruding Red, yaitu proses grooving, proses contour, proses taper turning, dan proses grinding.

Gambar 1. Flowchart Metodologi Pengolahan Data

Metode FMEA dilakukan dengan tujuan untuk mengidentifikasi kegagalan potensial dari permasalahan kualitas produk. Tahapan—tahapan yang dilakukan yaitu mengidentifikasi jenis kegagalan yang terjadi, efek yang ditimbulkan, penyebab—penyebab dari kegagalan tersebut dan kontrol yang dilakukan perusahaan saat ini dalam menghadapi kegagalan tersebut. Setelah itu, dilakukan penetapan rating terhadap S.O, dan D. Setelah ketiga elemen tersebut diberi nilai, selanjutnya dilakukan perhitungan nilai Risk Priority Number (RPN). Nilai RPN yang terbesar akan diurutkan dari nilai RPN terbesar ke terkecil untuk menentukan permasalahan potensial. Setelah mendapatkan nilai RPN tertinggi, maka dilanjutkan dengan penggunaan metode Fault Tree Analysis (FTA). Metode FTA digunakan untuk mendapatkan akar penyebab dari permasalahan kegagalan proses produksi tersebut. Hasil dari FTA dilanjutkan dengan memberikan usulan perbaikan yang sesuai untuk perbaikan kualitas produk Punch Extruding Red.

HASIL DAN PEMBAHASAN

Pembahasan

Berdasarkan hasil plot data, maka dapat disimpulkan pada produk Punch Extruding Red periode Oktober 2020 - Desember 2020 sudah stabil dikarenakan tidak terdapat data yang berada di luar batas kendali sehingga dapat dianjutkan peninjauan terhadap kegagalan potensial yang terjadi dengan menggunakan metode Failure Mode and Effect Analysis (FMEA). Tahap selanjutnya adalah mengidentifikasi bentuk kegagalan yang mungkin terjadi dan mengenali penyebab ponsensional dengan menggunakan metode FMEA. Dalam FMEA dilakukan penentuan nilai Severity (S), Occurrence (O), dan Detection (D). Selanjutnya dilakukan perhitungan nilai Risk Priority Number (RPN) dan nilai RPN diurutkan berdasarkan nilai RPN terbesar ke terkecil untuk menentukan prioritas penanganan untuk mengurangi angka resiko.

<table>
<thead>
<tr>
<th>No.</th>
<th>Proses</th>
<th>Feature Mode</th>
<th>Potential Occurring Failure</th>
<th>Potential Causing Failure</th>
<th>Control</th>
<th>Severity</th>
<th>Occurrence</th>
<th>Detection</th>
<th>RPN</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Penempatan benda kerja</td>
<td>Chuck rusak</td>
<td>Proses terhenti</td>
<td>Operator kurang teliti</td>
<td>3</td>
<td>7</td>
<td>8</td>
<td></td>
<td>104</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Benda kerja tidak</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>stabel</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Seteng mesin</td>
<td>Kecapatan spinel malah 2500 RPM</td>
<td>Masih aus atau mesin mengalami kerusakan</td>
<td>Kesalahan dalam setting mesin</td>
<td>7</td>
<td></td>
<td>7</td>
<td></td>
<td>147</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Tingkat penggunaan mesin yang tinggi</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Belum ada</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td>490</td>
</tr>
<tr>
<td>3</td>
<td>Pembuatan alur</td>
<td>Alur tidak sesuai ukuran</td>
<td>Operator kurang teliti</td>
<td>Pekerjaan operator diawasi</td>
<td>3</td>
<td>7</td>
<td>7</td>
<td></td>
<td>104</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Belum ada</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Gambar 2. Peta Kendali P Periode Oktober-Desember 2020

Tabel 4. FMEA Proses Grooving Produk Punch Extruding Red

156 | Wawan Kumiaawan, Debbie Kemala Sari, Fira Sabrina; Perbaikan Kualitas...
Penyebab kegagalan potensial (potential causes of failure) pada FMEA diurutkan berdasarkan nilai RPN tertinggi dengan tujuan untuk mengetahui penyebab kegagalan yang perlu ditangani terlebih dahulu. Penelitian mengambil 3 penyebab kegagalan dengan total Risk Priority Number (RPN) tertinggi untuk dilanjutkan peninjauan menggunakan metode Fault Tree Analysis (FTA), yaitu usia pemakaian mata pahat sudah terlalu lama dengan nilai RPN sebesar 560, tingkat penggunaan mesin yang tinggi dengan nilai RPN sebesar 450, dan alat potong tidak diperiksa dengan nilai RPN sebesar 360. Langkah yang dilakukan selanjutnya adalah dengan mengidentifikasi akar permasalahan dari ketiga penyebab kegagalan terpilih dengan menggunakan Fault Tree Analysis (FTA).

![Diagram FTA Usia Pemakaian Mata Pahat Terlalu Lama](image1)

Gambar 3. FTA Usia Pemakaian Mata Pahat Terlalu Lama

![Diagram FTA Tingkat Penggunaan Mesin yang Tinggi](image2)

Gambar 4. FTA Tingkat Penggunaan Mesin yang Tinggi
Pohon kesalahan memberikan informasi mengenai berbagai kombinasi kejadian yang mengarah kepada ke-6 kriter sistem. Kombinasi dari berbagai kejadian disebut sebagai cut set. Untuk mengidentifikasi minimal cut set digunakan method for obtaining cut set (MOCUS).

Tabel 5. Probabilitas Basic Event dari Penyebab Kegagalan Usia Pemakaian Mata Pahat Terlalu Lama

<table>
<thead>
<tr>
<th>Simbol</th>
<th>Basic Event</th>
<th>Frekuensi Basic Event</th>
<th>Frekuensi Kejadian</th>
<th>Probabilitas Kejadian</th>
</tr>
</thead>
<tbody>
<tr>
<td>BE1</td>
<td>Tidak ada pencatatan untuk mencatat masa pakai mata pahat</td>
<td>6</td>
<td>40</td>
<td>0.15</td>
</tr>
<tr>
<td>BE2</td>
<td>Tidak ada racun penyimpanan mata pahat</td>
<td>5</td>
<td>40</td>
<td>0.125</td>
</tr>
<tr>
<td>BE3</td>
<td>Tidak ada lama khusus sebagai perang masa pakai</td>
<td>2</td>
<td>40</td>
<td>0.050</td>
</tr>
<tr>
<td>BE4</td>
<td>Tidak ada pengadilan untuk pengarahan mata pahat</td>
<td>2</td>
<td>40</td>
<td>0.050</td>
</tr>
</tbody>
</table>

Tabel 6. Probabilitas Basic Event dari Penyebab Kegagalan Tingkat Penggunaan Mesin yang Tinggi

<table>
<thead>
<tr>
<th>S no</th>
<th>Tingkat Penggunaan Mesin yang Tinggi</th>
<th>Basic Event</th>
<th>Frekuensi Basic Event</th>
<th>Frekuensi Kejadian</th>
<th>Probabilitas Kejadian</th>
</tr>
</thead>
<tbody>
<tr>
<td>BE1</td>
<td>Perusahaan belum merasa perlu menambah jumlah mesin</td>
<td>1</td>
<td>40</td>
<td>0.025</td>
<td></td>
</tr>
<tr>
<td>BE2</td>
<td>Tidak ada pelatihan mengenai pemakaian mesin yang baik</td>
<td>3</td>
<td>40</td>
<td>0.06</td>
<td></td>
</tr>
<tr>
<td>BE3</td>
<td>Tidak ada penanganan harian mesin</td>
<td>5</td>
<td>40</td>
<td>0.125</td>
<td></td>
</tr>
</tbody>
</table>

Berdasarkan hasil identifikasi minimal cut set menggunakan metode MOCUS, maka dapat dilihat bahwa probabilitas basic event untuk masing-masing akar permasalahan menyatakan kemungkinan kejadian tersebut kembali terulang. Untuk masing-masing penyebab kegagalan dipilih akar permasalahan dengan probabilitas basic event terbesar untuk didiagnosa lebih lanjut melalui beberapa usulan perbaikan.

Tabel 7. Probabilitas Basic Event dari Penyebab Kegagalan Alat Potong Tidak Diperlukan

<table>
<thead>
<tr>
<th>S no</th>
<th>Alat Potong Tidak Diperlukan</th>
<th>Basic Event</th>
<th>Frekuensi Basic Event</th>
<th>Frekuensi Kejadian</th>
<th>Probabilitas Kejadian</th>
</tr>
</thead>
<tbody>
<tr>
<td>BE1</td>
<td>Tidak ada SOP untuk pemeriksaan alat potong</td>
<td>2</td>
<td>40</td>
<td>0.05</td>
<td></td>
</tr>
<tr>
<td>BE2</td>
<td>Operator ingin copet selusa</td>
<td>4</td>
<td>40</td>
<td>0.10</td>
<td></td>
</tr>
<tr>
<td>BE3</td>
<td>Operator tidak teliti</td>
<td>2</td>
<td>40</td>
<td>0.05</td>
<td></td>
</tr>
</tbody>
</table>

158 | Wawan Kumarian, Deebi Kemala Sari, Fira Sabrina; Perbaikan Kualitas...
Usulan perbaikan dilakukan pada akar permasalahan dari hasil analisa menggunakan metode Fault Tree Analysis (FTA). Adapun pembahasan lebih jelas mengenai usulan-usulan perbaikan yang diberikan sebagai berikut.

Tidak Ada Pencatatan Masa Pakai Mata Pahat

Penyebar terjadinya masa pahat sudah terlalu lama diakibatkan pemakaian mata pahat yang sudah melebihi masa pakai atau terjadinya keausan mata pahat. Hal tersebut dikarenakan pihak produksi tidak memiliki pencatatan pemakaian mata pahat sehingga tidak dapat mengetahui kapan seharusnya mata pahat tersebut diganti. Sehingga usulan perbaikan yang diberikan adalah pembuatan *record card* untuk mencatat pemakaian mata pahat.

![Gambar 6. Record Card Mata Pahat]

Gambar 7. Alur Pelaksanaan Pengisian Record Card Mata Pahat

Perancangan *record card* bertujuan agar pencatatan masa pemakaian mata pahat dapat lebih sistematik. Dengan adanya *record card* diharapkan dapat dilakukan pergantian mata pahat secara tepat waktu untuk meminimalkan penggunaan mata pahat yang sudah melebihi usia pakainya atau terjadinya keausan pada mata pahat.

Tidak Ada Penyediaan Rak Khusus Penyimpanan Mata Pahat

Dalam penyimpanan mata pahat, perusahaan sudah memiliki rak penyimpanan mata pahat, tetapi rak tersebut kurang efektif dikarenakan mata pahat dengan jenis dan kondisi yang berbeda diletakkan di satu tempat yang sama. Karena hal tersebut, usulan perbaikan yang diberikan adalah perubahan rak khusus penyimpanan mata pahat berdasarkan proses perancangan dan pengembangan produk. Tahapan-tahapan perancangan dan pengembangan rak penyimpanan mata pahat dilakukan berdasarkan hasil brainstorming dengan pihak perusahaan agar dapat menyesuaikan dengan kebutuhan perusahaan.

![Tabel 9. Mission Statement]

- **Deskripsi Produk**: Produk merupakan tempat penyimpanan khusus mata pahat yang terdiri dari beberapa bagian untuk memisahkan mata pahat berdasarkan jenis dan kondisi.
- **Sasaran Bisnis Suatu Primary Market**: Produk dirancang untuk diperjual pada tahun 2021.
- **Secondary Market**: Perusahaan pengguna mesin bubut.
- **Asumsi dan Batasan**: Bahan rak menggunakan bahan aluminium dan besi dengan bahan yang transparan.
- **Stakeholder**: User: Perusahaan pengguna mesin bubut; Supplier: Unit pengangan Furniture.
Tabel 10. Identifikasi Kebutuhan Pelanggan

<table>
<thead>
<tr>
<th>No.</th>
<th>Penyertaan Umum</th>
<th>Penyertaan Pelanggan</th>
<th>Keterangan Baru</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Penyertaan Umum</td>
<td>Tempat penyimpanan khusus yang berguna untuk memisahkan penyimpanan mata pahat</td>
<td>Rak yang dapat digunakan untuk memisahkan mata pahat yang lama dan baru</td>
</tr>
<tr>
<td>2</td>
<td>Hal yang Didiskusikan</td>
<td>Operator ingin tempat penyimpanan yang lebih luas</td>
<td>Rak dibuat dari bahan aluminium</td>
</tr>
<tr>
<td>3</td>
<td>Hal yang Tidak Didiskusikan</td>
<td>Operator tidak menyukai rak dengan laci yang berat dan berat</td>
<td>Rak ini memiliki laci penyimpanan yang rapat dan desain tertutup</td>
</tr>
<tr>
<td>4</td>
<td>Usulan Penggunaan Produk</td>
<td>Operator ingin tempat penyimpanan yang mudah digunakan dan memilikiSeveral</td>
<td>Rak ini memiliki ukuran yang sederhana, praktis, material ringan dan kokoh serta terdiri dari beberapa laci penyimpanan</td>
</tr>
</tbody>
</table>

Tabel 11. Interpretasi Kebutuhan menjadi Hierarki

<table>
<thead>
<tr>
<th>No. Prioritas</th>
<th>No. Subprioritas</th>
<th>Fungsi</th>
<th>Rak yang dapat digunakan untuk memisahkan mata pahat yang lama dan baru</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>Desain</td>
<td>Rak ini memiliki laci penyimpanan yang dapat di slide</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>Material</td>
<td>Rak ini dibuat dengan ukuran yang praktis dan sederhana</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>Material</td>
<td>Rak ini memiliki laci penyimpanan yang rapat untuk mata pahat dan desain tertutup</td>
</tr>
</tbody>
</table>

Tabel 12. Tingkat Kepentingan Kebutuhan Pengguna

<table>
<thead>
<tr>
<th>No.</th>
<th>Kebutuhan</th>
<th>T. Kepentingan</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Rak dapat digunakan untuk memisahkan mata pahat yang lama dan baru</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>Rak ini memiliki laci penyimpanan yang dapat di slide</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>Rak ini dibuat dengan ukuran yang praktis dan sederhana</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>Rak ini memiliki laci penyimpanan yang rapat untuk mata pahat dan desain tertutup</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>Rak dibuat dari bahan aluminium</td>
<td>4</td>
</tr>
</tbody>
</table>

Tabel 13. Ukuran Metrics

<table>
<thead>
<tr>
<th>No.</th>
<th>Kebutuhan</th>
<th>Metrics</th>
<th>Tingkat Kepentingan</th>
<th>Satuan</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>Fungsi</td>
<td>5</td>
<td>subjek</td>
</tr>
<tr>
<td>2</td>
<td>2,3,4</td>
<td>Desain</td>
<td>5</td>
<td>subjek</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>Material</td>
<td>4</td>
<td>subjek</td>
</tr>
</tbody>
</table>

Tabel 14. Benchmarking

<table>
<thead>
<tr>
<th>No. Nomer</th>
<th>Metrics</th>
<th>Tingkat Kepentingan</th>
<th>Unit</th>
<th>Nol 1</th>
<th>Nol 2</th>
<th>Nol 1</th>
<th>Nol 2</th>
<th>Nol 1</th>
<th>Nol 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Fungsi</td>
<td>5</td>
<td>subjek</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>2,3,4</td>
<td>Desain</td>
<td>5</td>
<td>subjek</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>Material</td>
<td>4</td>
<td>subjek</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

Tabel 15. Criteria Selection

<table>
<thead>
<tr>
<th>Criteria Selection</th>
<th>Rata-Rata</th>
<th>% Bobot</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fungsi</td>
<td>5</td>
<td>48,54</td>
</tr>
<tr>
<td>Desain</td>
<td>4</td>
<td>32,43</td>
</tr>
<tr>
<td>Material</td>
<td>3,33</td>
<td>27,03</td>
</tr>
<tr>
<td>Total</td>
<td>12,33</td>
<td>100</td>
</tr>
</tbody>
</table>

160 | Wawan Kumiawan, Debbie Kemala Sari, Fira Sabrina; Perbaikan Kualitas...
Berdasarkan tahap-tahap yang sudah dilakukan sebelumnya, terpilih konsep 2 yang merupakan produk rak penyimpanan khusus mata pahat dengan material aluminium dan aklirik untuk bagian laci. Rak ini merupakan solusi untuk akar permasalahan berupa tidak ada rak khusus penyimpanan mata pahat yang memisahkan mata pahat lama dengan mata pahat baru. Konsep 2 memiliki dimensi berupa panjang sebesar 40 cm, lebar sebesar 20 cm, dan tinggi sebesar 40 cm. Gambar 8. merupakan rak penyimpanan mata pahat berdasarkan konsep 2.

Gambar 8. Konsep Rak Penyimpanan Mata Pahat Terpilih

Tidak Ada Perawatan Harian Mesin

Gambar 9. Form Perawatan Harian Mesin Bubut
Gambar 10. Alur Pelaksanaan Pengisian Form Perawatan Harian Mesin

Dengan adanya form perawatan harian mesin bubut, diharapkan dapat memudahkan perusahaan dalam memonitor kondisi mesin bubut dan dapat mengurangi penyebab cacat yang terjadi pada suatu produk.

Alat Potong Tidak Diperiksa

Gambar 11: Penyusunan kegiatan Training

Dengan adanya training diharapkan dapat meningkatkan pengetahuan dan kesadaran operator terhadap pentingnya melaksanakan proses produksi sesuai dengan prosedur.

Untuk menguji implementasi usulan yang telah dilakukan epeknya dapat mengurangi jumlah produk cacat dari produk Punch Extruding Red, dilakukan uji proporsi yang digunakan untuk mengetahui apakah data cacat yang diambil setelah implementasi lebih kecil dibandingkan dengan sebelum implementasi. Pengujian dihitung dengan menggunakan taraf nyata sebesar 5% atau 0,05 dan tingkat kepercayaan sebesar 95%. Data proporsi cacat sebelum implementasi dinotasikan dalam bentuk p1 dan setelah implementasi dalam bentuk p2. Pada pengujian proporsi cacat, didapatkan hasil tidak ada perbedaan antara proporsi cacat produk punch extruding red sebelum implementasi dengan proporsi cacat produk punch extruding red setelah implementasi. Berdasarkan hal tersebut, maka data sebelum implementasi dan data sesudah implementasi perbaikan layak dibandingkan meskipun jumlah datanya berbeda.

Untuk mengidentifikasi kestabilan proses setelah perbaikan, maka perlu dihitung kembali dengan menggunakan peta kendali p mengikuti perhitungan yang telah dilakukan pada tahap sebelumnya.
Gambar 12. Penyusunan Kegiatan Training

Pada gambar diatas dapat dilihat hasil dari pikt data, didapatkan bahwa ad produksi produk Punch Extruding Red setelah implementasi selama 10 hari sudah stabil dikarenakan tidak terdapat data yang berada di luar batas kendali (in control)

Tabel 18. Perbandingan Proporsi Cacat Sebelum Implementasi dan Sesudah Implementasi

<table>
<thead>
<tr>
<th>Perbandingan</th>
<th>Bulan</th>
<th>Proporsi Cacat</th>
<th>Rate-Rata</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sebelum Implementasi</td>
<td>Oktober 2020</td>
<td>4,08%</td>
<td>4,33%</td>
</tr>
<tr>
<td></td>
<td>November 2020</td>
<td>4,00%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Desember 2020</td>
<td>4,90%</td>
<td></td>
</tr>
<tr>
<td>Setelah Implementasi</td>
<td>Januari 2021</td>
<td>2,94%</td>
<td>2,94%</td>
</tr>
<tr>
<td>Selisih</td>
<td></td>
<td></td>
<td>1,39%</td>
</tr>
</tbody>
</table>

Mengenai perhitungan proporsi produk cacat, hasil data setelah implementasi dilaksanakan menunjukkan bahwa proporsi produk cacat turun menjadi 0,0294 terhitung dari tanggal 1 April 2021 sampai 19 April 2021 (selama 10 hari kerja) dibandingkan dengan sebelum implementasi yaitu 0,0433 terhitung dari tanggal 14 Oktober 2020 sampai 21 Desember 2020 (selama 10 hari kerja per bulannya). Tetapi penurunan persentase cacat tersebut belum dapat mencapai batas persentase cacat yang ditetapkan oleh perusahaan yaitu zero defect mengingat adanya keterbatasan waktu dan beberapa usulan perbaikan yang belum dapat dilaksanakan. Oleh karena itu, diharapkan usulan perbaikan yang diberikan dapat terus dilaksanakan perusahaan secara konsisten maka diprediksi tingkat persentase cacat akan menurun sesuai dengan target yang ditetapkan perusahaan

KESIMPULAN DAN SARAN

Berdasarkan hasil pengolahan data dan analisa yang telah dilakukan pada tahap selanjutnya, inilah ditarik kesimpulan yaitu:
1. Berdasarkan analisa Failure Mode and Effect Analysis (FMEA), diperoleh 13 penyebab kegagalan berserta Risk Priority Number (RPN) untuk masing-masing penyebab kegagalan.
2. Hasil perhitungan Risk Priority Number (RPN) pada metode Failure Mode and Effect Analysis (FMEA) diperoleh prioritas penyebab kegagalan potensial tertinggi, yaitu usia pemakaian mata pahat sudah terlalu lama dengan nilai RPN sebesar 560, tingkat penggunaan mesin yang tinggi dengan nilai RPN sebesar 490, dan alat potong tidak diperiksa dengan nilai RPN sebesar 360.
3. Berdasarkan analisa pada Fault Tree Analysis (FTA), didapatkan 4 akar permasalahan utama, yaitu tidak ada pencatatan untuk mencatat masa pakai mata pahat dengan probabilitas sebesar 0,15, tidak ada rak khusus penyimpanan mata pahat dengan probabilitas sebesar 0,125, tidak ada perawatan harian mesin dengan probabilitas sebesar 0,125, dan operator ingin cepat selesai dengan probabilitas sebesar 0,10.
4. Usulan perbaikan yang dapat diberikan berdasarkan hasil analisa, yaitu membuat record card untuk mencatat masa pakai mata pahat, merancang rak penyimpanan untuk menyimpan mata pahat, membuat form perawatan harian mesin baru, dan memberikan training kepada operator untuk...
mengingkatkan kesadaran operator terhadap pentingnya menjalankan proses produksi sesuai dengan prosedur.

5. Setelah implementasi usulan form perawatan harian mesin bubut dilakukan selama 10 hari, diperoleh proporsi cacat sebesar 0,0294 sehingga dapat diketahui adanya penurunan proporsi cacat dibandingkan dengan sebelum dilakukan implementasi.

DAFTAR PUSTAKA

164 | Wawan Kurniawan, Debbie Kemala Sari, Fira Sabrina; Perbaikan Kualitas...
Perbaikan Kualitas Menggunakan Metode Failure Mode And Effect Analysis Dan Fault Tree Analysis Pada Produk Punch Extruding Red Di PT. Jaya Mandiri Indotech

ORIGINALITY REPORT

16% SIMILARITY INDEX
14% INTERNET SOURCES
8% PUBLICATIONS
8% STUDENT PAPERS

PRIMARY SOURCES

1. Submitted to Fakultas Teknologi Kebumian dan Energi Universitas Trisakti
 Student Paper

2. ejurnal.itats.ac.id
 Internet Source

3. repository.ub.ac.id
 Internet Source

4. ejournal3.undip.ac.id
 Internet Source

5. repository.uin-suska.ac.id
 Internet Source

6. text-id.123dok.com
 Internet Source

7. es.scribd.com
 Internet Source

8. repository.uma.ac.id
 Internet Source
<p>| 9 | 123dok.com | Internet Source | <1% |
| 10 | core.ac.uk | Internet Source | <1% |
| 11 | repository.unugha.ac.id | Internet Source | <1% |
| 12 | Submitted to Universitas Muhammadiyah Surakarta | Student Paper | <1% |
| 13 | snti.trisakti.ac.id | Internet Source | <1% |
| 14 | repository.ppns.ac.id | Internet Source | <1% |
| 15 | repository.utu.ac.id | Internet Source | <1% |
| 16 | Denny Denny Denny Siregar, Kristin Samdamery. "USULAN PERBAIKAN KUALITAS PRODUKSI ALUMINIUM TUBE BEROCCA ORG (ORANGE) 15AU DENGAN ALAT BANTU STATISTIK SEVEN TOOLS (STUDI KASUS DI PT. XYZ)", MATRIK, 2018 | Publication | <1% |
| 17 | docplayer.info | Internet Source | <1% |
| 18 | repository.unhas.ac.id | Internet Source | <1% |</p>
<table>
<thead>
<tr>
<th>19</th>
<th>repository.unpas.ac.id</th>
<th>Amitava Mitra. "Fundamentals of Quality Control and Improvement", Wiley, 2021</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>21</td>
<td>Submitted to KDI School of Public Policy and Management</td>
</tr>
<tr>
<td>22</td>
<td>Ahmad Husamuddin, Pregiwati Pusporini, Deny Andesta. "ANALISIS KERUSAKAN JEMBATAN TIMBANG UNIT 1 di PT.PETROKIMIA GRESIK DENGAN MENGGUNAKAN METODE FAILURE MODE and EFFECT ANALYSIS dan METODE LOGIC TREE ANALYSIS", JUSTI (Jurnal Sistem dan Teknik Industri), 2021</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>Submitted to Universitas Brawijaya</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>dione.lib.unipi.gr</td>
<td></td>
</tr>
</tbody>
</table>
Rina Fitriana, Johnson Saragih, Salma Defina Fauziyah. "Quality improvement on Common Rail Type-1 Product using Six Sigma Method and Data Mining on Forging Line in PT. ABC", IOP Conference Series: Materials Science and Engineering, 2020